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Chapter 19

Using GIS to display complex soil salinity patterns in an inland

salt marsh

Matthew Grunstra and O.W. Van Auken

Abstract

Inland salt marshes are found near salt lakes and desert springs in
areas of high evaporation and low precipitation. Spatial and seasonal
fluctuations of the soil salinity levels are assumed to be associated
with local climate. However, topography complicates the general soil
salinity patterns attributed to climate. To better demonstrate and
display these spatial and temporal relationships, soil salinity data
were gathered over a ten-month period and then examined with a
geographic information system software package. A variety of sur-
face contour plots can be generated depending on the software used,
the interpolation method, and the input variables chosen. To dem-
onstrate some of this variation, surface plots were interpolated using
the inverse distance weighted method in ArcView 3.3 and the ordi-
nary kriging method in ArcGIS 8. Various methods and settings
should be examined to create the clearest interpolated surface to
present the collected data. Using the same data, ordinary kriging
generated a gradual, smooth surface while the overall quality of the
inverse distance weighted surface was irregular. The ordinary kriging
method produced mean error and root-mean-square error statistics
closer to zero indicating it would generally yield a better estimation
of the soil salinity. The surfaces generated showed some seasonal
fluctuation in soil salinity but spatial changes were more distinct. The
low-elevation areas in the center of the salt marsh had low levels of
soil salinity while the marsh edges at slightly higher elevations had
increased levels of soil salinity. The spatial patterns of soil salinity
appear to depend on seasonality, specifically rainfall and plant ac-
tivity and the amount of water present in the salt marsh. However,
local surface anomalies can mask these patterns. Through the use of
global information systems (GIS) and interpolation some of the
masking effects can be reduced revealing the underlying patterns.
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19.1. Introduction

Geographical information systems (GIS) and global positioning systems
(GPS) provide new ways to investigate and display areas both spatially
and temporally. The surface contour plot is a tool readily available with
the emergence of cheaper GIS software. A surface contour plot allows a
limited point dataset to be expanded to display estimated values at any
point within a study area, thereby possibly reducing the amount and
expense of sampling.

There are numerous interpolation methods available for the creation
of these surface contours (Lam, 1983; Isaaks and Srivastava, 1989;
Burrough and McDonnell, 1998). Each of these individual interpolation
methods allow the user to modify characteristics and input variables
that can yield large variations in the output surface. As of yet there is no
universally accepted systematic approach to method selection. This
chapter will demonstrate different output surfaces created using two of
the more common interpolation techniques, Inverse Distance Weighted
(IDW) and Ordinary Kriging (Franzen and Peck, 1995; Weisz et al.,
1995). It will also demonstrate how these surfaces can be applied to field
research by examining the spatial and temporal fluctuations of soil
salinity levels in an inland salt marsh.

The IDW method is a local deterministic interpolation technique
(ESRI, 1999; Ormsby and Alvi, 1999; Johnston et al., 2001). A local
technique calculates the estimated values for the entire study area based
on small spatial areas or neighborhoods. The IDW method is an exact
interpolator which predicts a value at a sample location that is equal to
the measured value in the dataset (ESRI, 1999; Johnston et al., 2001). The
calculations used with this procedure are based on the principle that
each data point has a local influence that is reduced with distance (ESRI,
1999; Ormsby and Alvi, 1999; Johnston et al., 2001). The IDW method
produces accurate surface interpolation as long as a regularly distributed
sampling pattern is used in data collection (ESRI, 1999, 2000; Ormsby
and Alvi, 1999; Johnston et al., 2001). Low concentration or an uneven
distribution in the sampling points often produces sharp peaks or troughs
in the output surface (Ormsby and Alvi, 1999; ESRI, 2000; Johnston
et al., 2001).

The ArcGIS 8 software allows the use of the geostatistical interpolation
method of ordinary kriging to create surface contour plots. Kriging has
theoretical advantages over the IDW method because it is a geostatistical
technique which is based on the principle that direction or distance be-
tween points reflects a spatial correlation that can explain the variation of
the surface (Isaaks and Srivastava, 1989; Burrough and McDonnell,
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1998; ESRI, 2000; Johnston et al., 2001; ESRI, 2003). Ordinary kriging is
based on the principle that direction or distance between points reflects a
spatial correlation that can explain the variation of the surface (ESRI,
2000; Johnston et al., 2001).

The Geostatistical Analyst extension in the ArcGIS 8.0 software also
allows cross-validation of the prediction errors, which serves as a diag-
nostic tool to evaluate the surface plot generated (Johnston et al., 2001).
Cross-validation uses all of the dataset to estimate the model and then it
removes each data location, one point at a time, and predicts the asso-
ciated data value (Johnston et al., 2001). The prediction error statistics
include a mean error, root-mean-square error, average standard error,
and the root-mean-square standardized error (Johnston et al., 2001).

Many studies have compared the performance of these two methods
using cross-validation techniques and generation of error statistics
(Warrick et al., 1988; Laslett et al., 1987; Wollenhaupt et al., 1994;
Gotway et al., 1996; Kravchenko and Bullock, 1999; Brodsky et al., 2001;
Mueller et al. 2001; Jones et al., 2003; Kravchenko, 2003; Mueller et al.,
2004). Several studies found kriging to produce lower root-mean-square
errors than the IDW method for their data (Lefohn et al., 1987;
Kravchenko and Bullock, 1999; Bekele et al., 2003). Others authors
have indicated IDW as a more suitable method with the IDW method
generating a lower root-mean-square error than the kriging method when
investigating soil properties in western Australia (Robinson and
Metternicht, 2005). Some studies used other generated error statistics
such as mean error, mean absolute error, and error standard deviation
(Phillips et al., 1997) or log mean squared error (Zimmerman et al., 1999)
to evaluate performance between the different methods. Most often sam-
pling location, spatial correlation and grid scale were found to influence
the optimal method (Bucher and Vckovski, 1995; Gotway et al., 1996;
Brodsky et al., 2001; Dille et al., 2003; Jones et al., 2003; Kravchenko,
2003; Mueller et al., 2004). The varied results in each of these studies
indicate careful consideration should be employed when determining the
interpolation method and settings to be used with a given dataset.

Many studies of soil salinity, vegetation and salt marshes have incor-
porated GIS into their analysis or presentation of their data. GIS inter-
polations have been used to determine the spatial dynamics of soil salinity
in arid and in semi-arid conditions (Jordan et al., 2004) as well as to
determine the temporal and spatial variability of soil salinity in a coastal
saline field (Shi et al., 2005) and a cotton field irrigated with low-quality
water (Cetin and Kirda, 2003). Recent and subfossil vegetation data was
imported into a GIS software package and used to investigate and de-
termine long-term salt marsh vegetation dynamics on Frisian barrier
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islands off the coast of Germany (Freund et al., 2003). GIS combined
with aerial photography has indicated the broad distribution of the
vegetational patterns in a Georgia tidal salt marsh were due to salinity
(Higinbotham et al., 2004).

Saline marshes are of two general types, marine and inland, and occur
in many different geographical areas worldwide (Odum, 1988). Marine
marshes are found along large bodies of saltwater, and are usually con-
sidered coastal salt marshes (Chapman, 1974). Inland salt marshes typ-
ically occur in desert areas usually without a large body of water nearby.
Inland marshes develop within high-evaporation basins, usually next to
inland saline lakes, and lowlands associated with desert springs (Odum,
1988). This is due to the high rate of evaporation and low level of pre-
cipitation in these desert ecosystems. The level of salts and the kind of
salts found in the soil vary in both time and location (Borchert, 1971;
Ungar, 1974). This is due to the amount of precipitation, timing of the
precipitation in the system and the underlying rock type (Brune, 1981).

The Diamond Y Spring is located on a 6.1 km2 nature preserve owned
by the Nature Conservancy of Texas located approximately 16 km north
of Fort Stockton, Texas (Fig. 19.1). The Diamond Y Spring is the last
major spring still flowing in Pecos County, Texas (Veni, 1991). The
Diamond Y Spring Preserve protects six federally endangered or threat-
ened species. Included are the Puzzle Sunflower (Helianthus paradoxus),
Leon Springs Pupfish (Cyprinondon bovinus), Pecos Gambusia (Gambusia

nobilus), Diamond Y Spring snail (Tryonia adamantia), Gonzalez Spring
Snail (Tryonia stocktonensis), and Pecos Assiminea snail (Assiminea pecos)
(McDonald, 1999; Bush and Van Auken, 2004; Van Auken et al., 2007).

The types of soil, water chemistry, as well as, the plant communities
present are all indicators that the low elevation area at the Diamond Y
Spring Preserve is a salt marsh (Chapman, 1974; TPWD, 2003). Soils in
the study area are composed mainly of three associations: the Balmorhea,
Orla, and Lozier (Rives, 1980; Grunstra, 2002) (Fig. 19.1). These soils are
found in specific areas of the Diamond Y Spring Preserve due to elevation
and soil water. Balmorhea soils tend to be deep (4152 cm) moderately
saline and poorly drained often occupying lower elevation areas in and
around spring fed marshes where they are usually anaerobic due to con-
tinuous saturation (Fig. 19.1) (Rives, 1980; Lavelle and Spain, 2001;
Bush, 2002; Grunstra, 2002). Balmorhea soils are Mollisols and are clas-
sified as fine-silty, thermic Cumulic Haplaquolls (Schoeneberger et al.,
1998). These soils are usually gray silt loam containing fine concretions
of calcium carbonate (Rives, 1980; Lavelle and Spain, 2001). Orla soils
are Aridisols and are classified as fine-loamy, gypsic, thermic Typic
Gypsiorthids (Schoeneberger et al., 1998). Orla soils tend to be located in



Figure 19.1. Pecos County is located in west Texas, USA. The major aquifers underlying the Fort Stockton area and Pecos County, Texas include

the Edwards-Trinity, Rustler, and Capitan Reef. Soil types present in the area of the Diamond Y Spring Preserve include Balmorhea, Orla, and

Lozier association soils (Rives, 1980).
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the low to medium elevations of the study area, usually higher in ele-
vation than the Balmorhea soils and above the salt marsh (Fig. 19.1)
(Grunstra, 2002). Gypsum and loam comprises 40–80% of the
composition of these soils giving them a moderately alkaline pH, mod-
erate permeability, and a low water holding capacity (Rives, 1980;
Schoeneberger et al., 1998; Lavelle and Spain, 2001). Lozier soils occupy
the higher elevations surrounding the salt marsh, above the Orla soils,
lying on the limestone outcrops (Fig. 19.1) (Grunstra, 2002). Lozier series
soils are Aridsols and are classified as loamy-skeletal, carbonatic, thermic
Lithic Calciorthids (Schoeneberger et al., 1998). Lozier soil is well
drained, shallow, moderately alkaline and characterized as gravely and
stoney, light brownish gray in color with high limestone content (Rives,
1980; Lavelle and Spain, 2001).

There have been a number of studies done on the area hydrology but
nothing specific to the Diamond Y Spring Preserve (Boghici, 1997). The
general physiographic setting of the Diamond Y Spring Preserve is a
semi-arid karst terrain with an average annual precipitation of 33 cm
year�1 and an evaporative rate of 204 cm year�1 (Fig. 19.2) (Larkin and
Bomar, 1983). The aquifers underlying the area are: the Capitan Reef
Complex, Rustler, and Edwards-Trinity (Fig. 19.1).

The Capitan Limestone formation lies approximately 1200m below the
Diamond Y Spring Preserve and generally contains highly mineralized
calcium–magnesium bicarbonate water with dissolved-solids concentra-
tions that range from 850 to 2500mg l–1 (Veni, 1991; USGS, 2002). The
Rustler aquifer lies in the carbonates and evaporites of the Rustler For-
mation at a depth of approximately 220m under the Diamond Y Spring
Preserve (Veni, 1991) and uniformly yields water high in calcium and low
in bicarbonate (Small and Ozuna, 1993; Boghici, 1997). Total dissolved
solids range from 1500 to 80,000mg l–1 (Veni, 1991). The Edwards-Trinity
aquifer is found beneath most of Pecos County and covers areas under-
lain by both the Capitan Reef Complex and Rustler aquifers (Fig. 19.1).
The depth of the Edwards-Trinity aquifer under the Diamond Y Spring
Preserve is approximately 85m. The Edwards-Trinity aquifer water is
dominated by sulfate and chloride with high concentrations of sodium,
calcium, and magnesium cations (Veni, 1991; USGS, 2002). In Pecos
county, Edwards-Trinity aquifer water can be fresh to brackish contain-
ing less than 1500mg l–1 total dissolved solids or with total dissolved
solids up to 80,000mg l–1 due to mixing with Rustler water (Veni, 1991;
Boghici, 1997).

The aquifer that feeds the Diamond Y Spring is a point of slight con-
tention. In 1991, Veni suggested it was the Edwards-Trinity aquifer.
However, in 1997, Boghici suggested that the Rustler aquifer feeds the
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Figure 19.2. Total monthly precipitation data from December 2001 to October 2002. The

values are plotted for the center of the months. The solid line is the actual monthly pre-

cipitation reported from Fort Stockton, Texas. The mean precipitation data are based on
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preserve. In either case, the water has been found to be dominated by a
sodium–chloride–sulfate chemistry with moderate amounts of calcium and
magnesium (Veni, 1991; USGS, 2002). The Diamond Y Spring is located
approximately 1000m southwest of the current study site flowing into the
drainage area where it joins with Leon Creek flowing from the west cre-
ating the salt marsh. The water drains eastward mostly through subsurface
flow out of the marsh approximately 25 km to the Pecos River. The sur-
face flow is ephemeral due to the low rainfall and high-evaporative rate
(Van Auken and Bush, 1998; Grunstra, 2002; Hart, 2002).

The plant communities located within the salt marsh are in fairly dis-
tinct locations across the marsh landscape (Grunstra, 2002; Grunstra and
Van Auken, 2007; Van Auken et al., 2007). This distribution may be due
to the different species specific water requirements, salt tolerance, or
ability to out-compete rivals in the differing salinity levels of the soil
(Chapman, 1974; Niering and Warren, 1980; Bertness, 1991; Van Auken
and Bush, 1998; Bush, 2002; Grunstra and Van Auken, 2007; Van Auken
et al., 2007). Surrounding the marsh at a slightly higher elevation are
Prosopis glandulosa woodlands (Van Auken and Bush, 1998). Slightly
lower within the marsh are three distinct grassland communities. The
Sporobolus airoides grassland is slightly higher and drier than the Dis-

tichlis spicata community that is usually located in areas that are flooded
for at least part of the year. In the deepest soils of the central areas of the
marsh in soils that are usually flooded year round is the Schoenoplectus

Americana community.
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To gain a greater understanding of the distribution of the soil salinity
throughout the marsh and its possible relationship with the salt marsh
vegetation, soil salinity data were gathered. The point data were then
placed into a GIS software package in which a surface contour plot
was generated. The surface contour plot interpolated values to fill in the
study area and provide a representative overview of the soil salinity
levels throughout the salt marsh. Different geographic information sys-
tem software, interpolation methods, and input variables will generate
visually different surface contour plots and should be investigated for the
creation of the most useful interpolated surface of the data.
19.2. Methods

The borders of the study area were designated on the northern, western,
and eastern edges by fencing that allows controlled grazing on the marsh.
A sharp change in elevation out of the lowland and into the slightly
higher elevation of the surrounding limestone outcropping set the south-
ern limit of the study area. A grid pattern of observation points was
chosen to cover the study area based on an existing pattern of observation
wells located in the southwestern corner of the marsh (Bush, 2002). The
grid pattern used in the present study was expanded to a larger scale in
order to increase the size of the study area and encompass a larger area of
the salt marsh. The grid pattern consisted of 7 transects with a total of 87
observation points (Fig. 19.3).

A GeoExplorer III GPS receiver unit along with a Beacon-on-a-Belt
both manufactured by Trimble were used to map the study area and
the 87 observation points. For the observation points, a mean of ten
measurements per position were collected which helps to increase the
precision of the location data collected by increasing the size of the sam-
ple set. The position mode was set to collect 3D data using a minimum of
four satellites. The majority of the GPS measurements for each location
were collected using six to eight satellites while only three locations used
five satellites. The elevation mask was set for twenty degrees to reduce the
amount of ionosphere noise, which is above the recommended minimum
setting of fifteen degrees (Trimble, 1999). The signal-to-noise ratio mask
was set at ten to ensure acceptance of only strong satellite signals and
reduce noise distortion. The Position Dilution of Precision mask was set
at five to ensure the use of an even geometric distribution of satellites
(Trimble, 2001).

Trimble’s Beacon-on-a-Belt allowed the data to be real time differen-
tially corrected. Differential correction calculates the errors associated



Figure 19.3. Interpolated soil salinity for ten months of 2002 created using the IDW method. The locations of the soil collection sites and transects

(A-G) are also presented.
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with a known point and applies them to an unknown point’s location
(Hurn, 1989; Hurn, 1993; Trimble, 1999; Trimble, 2001). Real-time
differential correction involves receiving radio signals to correct the data
at the time of collection. It works by receiving GPS differential correction
information from local Minimum Shift Keying beacons run by the United
States government and transmitting that information to the GeoExplorer
III (Trimble, 2001). The beacon used in this study was located in Odessa,
Texas, approximately 100 km from the study area.

Using these settings minimized error and allowed attainment of sub-
meter horizontal precision on 65% of the 87 observation site locations at a
95% percent level of confidence as calculated by the pathfinder software.
The highest calculated error of the horizontal precision estimate was 2.7m
with a mean error of 1.2m based on the 87 observation site locations.

All of the GPS data collected in the field was imported from the Geo-
Explorer III into GPS Pathfinder Office software. The data files were then
exported as ArcView shapefiles from the GPS Pathfinder Office Software.
ArcView 3.3 and ArcGIS 8 were then used to create maps and surfaces
that were used to present and/or analyze the collected measurements
(ESRI, 1999; Ormsby and Alvi, 1999).

Soil samples from each of the 87 observation sites in the study area were
collected on a monthly basis beginning in January 2002 and continuing
until October 2002 for 870 total observations. A trowel was used to gather
approximately 300 g of surface soil from each observation site. Surface
litter was removed and the sample was collected from the top 1 cm of soil
(TAES, 1983). When a sampling site was under water, a sample of water
was collected. The soil was gathered approximately 2m from each obser-
vation point in a cross pattern. The samples were placed in plastic bags and
sealed to prevent evaporation. The sample bags were taken to the Uni-
versity of Texas at San Antonio greenhouse where the soil was analyzed.
Soil salinity was measured by making a 1:1 paste (soil:de-ionized water,
V:V) (Westerman, 1990; Rowell, 1994). The paste was stirred thoroughly
and allowed to sit for 30min (TAES, 1983). After the 30-min period, the
paste was stirred again and measured with a salinity probe. Salinity was
measured in parts per thousand. These measurements were then entered
into the attribute table of the GIS shapefiles created in ArcView 3.3 and
ArcGIS 8 from the collected GPS field sampling site locations.

The soil salinity point measurements were converted to a raster grid to
produce a continuous surface or contour plot across the study area. The
software creates a raster grid by first dividing the total area into a matrix
of equally sized cells (ESRI, 1999; Ormsby and Alvi, 1999; Johnston
et al., 2001). Each cell is then assigned a value depending on the method
of interpolation used for estimation. In this interpolation, the area was
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divided into 250 rows and 657 columns for grid cells of approximately 2m
by 2m. In ArcView 3.3, the Spatial Analyst extension was used to do this
interpolation by the IDW method. In ArcGIS 8, the Geostatistical An-
alyst extension was used to create the surface plots by the kriging method.

Both the IDW and ordinary kriging surface plots were created for the
soil salinity measurements for each location and for each of the ten
months of the study. Several iterations were performed for each inter-
polation method using various initial settings of neighborhood size of
analysis, lag spacing, and power of magnification. This was performed in
a systematic fashion in order to produce the most logical and represent-
ative interpolated surface for each method. The settings used for the IDW
surface displayed in this study were a neighborhood size of 15 with a
power magnification of 3. The settings that produced the best cross-
validation error statistics for the ordinary kriging method were for an
elliptical search neighborhood with no offset that is divided into four
sectors including five points per sector. Both methods allowed for the
display and investigation of spatial and temporal trends and patterns of
soil salinity levels in the salt marsh. The outputs from the two separate
interpolation methods were compared visually as well as by the error
statistics produced through cross-validation. The ArcGIS 8.0 software
was used to perform cross-validation and generate the mean prediction
error and the root-mean-square prediction error.

The monthly soil salinity was also examined for possible significant
differences between months using SAS and GraphPad’s Prism software
packages (Milliken and Johnston, 1992; SAS, 1995, 1999). Bartlett’s test
was used to test for equal variances (Milliken and Johnston, 1992). In
SAS, the Shapiro-Wilk’s statistic was used to test for normality (Milliken
and Johnston, 1992). The soil salinity data were found in all cases to be
non-normal, so transformations were performed to meet the normality
assumption. The following transformations were examined in the SAS
software; log, reciprocal, square root, exponential, and square. None of
the transformations yielded normalized data so nonparametric tests were
used. GraphPad’s Prism software was used to run the Friedman non-
parametric one-way analysis of variance test to account for the repeated
measures inherent in the datasets. Dunn’s multiple comparison test was
used to compare monthly differences.
19.3. Results

The ArcView 3.3 soil surface salinity contour plots created using the IDW
method show a range of salinity levels from a low of 3 ppt to a high of



Figure 19.4. Locations of areas where the soil salinity stayed in the identified limit for the

entire ten-month study period. The solid black areas are the locations where the salinity level

stayed continually high with values always greater than 20 ppt. The light gray colors are

consistently low-salinity levels never getting above 7 ppt.

Using GIS to Display Complex Soil Salinity Patterns 419
43 ppt (Fig. 19.3). The solid black areas represent the highest salinity
levels while lower levels are shown with various patterns. High salinity
levels were found along the borders or edges of the study area especially
in the northwest with lower salinity levels found toward the center or
lower elevations of the marsh associated with the drainage (Fig. 19.3).
The surface soils in the eastern half of the study area consistently showed
large areas with soil salinity levels in the 3–10 ppt salinity range
(Fig. 19.3). There was little variation in the soil salinity levels in these
locations through the ten-month study period.

A few locations in the study area had consistently high or low soil
salinity (Fig. 19.4). Even though the levels of surface soil salinity main-
tained a fairly stable pattern on a month-per-month basis, there were
months when the levels fluctuated greatly leaving only small areas with
constant high or low values for every month. There were two small areas
located in the southeastern region of the study area that consistently had
soil surface salinity values less than 7 ppt. Surface soil salinity levels
greater than 20 ppt were found in locations along the edge of the north-
western part of the study area (Fig. 19.4).

The spatial variation of soil salinity across the study area was examined
for each of the seven transects. The seven transects were plotted on
separate bar graphs depicting the ten-month soil salinity mean for each
location (Fig. 19.5). The nonparametric Kruskal-Wallis test showed sig-
nificant differences for each transect across the marsh (Po0.05). The
trend in the north to south direction across the study area can be most
seen with locations at the ends of the transects having significantly higher
soil salinity values than areas located in the central region of the study.
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seven transect lines across the study area. The bars are the standard errors. The nonpar-

ametric Kruskal-Wallis test demonstrated significant differences for each transect (Po0.05).

Means with the same letter are not significantly different (Dunn’s multiple comparison test,

P40.05).
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These statistically higher soil salinity locations coincided with the high-
salinity values displayed in the GIS surface contours (Fig. 19.3).

The monthly means for the salinity data were also plotted for each of
the ten months of the study with error bars indicating the 95% confidence
interval (Fig. 19.6). The nonparametric Kruskal-Wallis test demonstrated
significant differences for each month (Po0.05). From January to
March, there is only a slight variation in the salinity mean values with
11.10, 11.62, and 12.86 ppt, respectively (Fig. 19.6). April and September
were the months with the highest means with September’s mean of
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each of the ten months in the study period. The nonparametric Kruskal-Wallis test dem-

onstrated significant differences for each transect (Po0.05). The error bar shows the stand-
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15.43 ppt being slightly higher than April’s 14.72 ppt (Fig. 19.6). May had
the lowest mean surface soil salinity with 10.65 ppt. In September, salinity
was found to be significantly different from all of the other months except
April (Fig. 19.6). For surface soil salinity, April values were significantly
different than those for May, July, and August (Fig. 19.6).

The surface contours created using the ordinary kriging method were
smoother or less ragged than those created by the IDW procedure (com-
paring Figs. 19.3 and 19.7). In addition, they also show a large portion of
the study area with soil salinity in the range from 5 to 10 ppt (Fig. 19.7).
The majority of the higher levels of soil salinity in the range of 25–43
ppt were found along the northwestern border of the study area with
occasional occurrences near the southwestern border. February and
October show most of the study area with lower levels of salinity with
very little area in the higher ranges (Fig. 19.7). April and September show
larger areas with higher levels of salinity covering more of the study
area than the rest of the time period (Fig. 19.7). The trend shows higher
levels always near the borders and lower levels toward the middle of the
study area.

Through visual examination both general differences and similarities of
the surface plots created using the IDW and ordinary kriging methods
could be observed (comparing Figs. 19.3 and 19.7). In the IDW surface
plots, the sampling points and transects can more readily be observed
(Fig. 3). The ordinary kriging method depicts more gradual and smoother
transitions between soil salinity values (Fig. 19.7). The IDW depicts a



Figure 19.7. Interpolated soil salinity values per ten months of 2002 created using the Ordinary Kriging method in ArcGIS 8.0 software.
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Table 19.1. Mean and root-mean-square error statistics generated for the interpolated

surfaces created using the IDW and ordinary kriging methods. The ordinary kriging method

consistently produced values closer to zero indicating it would generally yield a better

estimation of the soil salinity

Month Mean Root-mean-square

IDW Kriging IDW Kriging

January �0.15 0.05 5.48 5.10

February �0.69 �0.05 7.31 6.97

March �1.13 �0.06 7.67 7.30

April �1.26 �0.29 10.1 8.57

May �1.02 �0.13 7.63 6.38

June �1.06 �0.18 8.27 6.59

July �0.89 �0.36 6.17 5.20

August �0.87 0.01 7.74 6.07

September �1.33 �0.27 7.65 6.76

October �0.46 �0.05 5.97 4.97
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larger surface area of the salt marsh covered by the lower values of
3–5 ppt while the ordinary method estimates those same areas to have
slightly higher values between 5 and 10 ppt (Figs. 19.3 and 19.7). On the
northern border, the IDW method shows localized concentrations of
high-soil salinity around the sampling locations while the ordinary kri-
ging method shows a banding pattern in those same areas. The IDW
method tends to show less area covered by higher salinity and more area
covered with lower salinity while the ordinary kriging method tends to
show the reverse. Although both methods of visual representation show
similar trends, the ordinary kriging surface contour plots are much
smoother (Figs. 19.3 and 19.7).

The IDW and the ordinary kriging methods were evaluated by com-
paring the overall mean prediction error and root-mean-square prediction
error for their surface contour plots (Table 19.1). The ordinary kriging
method consistently produced values closer to zero indicating it would
generally yield a better estimation of the soil salinity. Both methods de-
pict the northern and southern borders of the salt marsh consistently,
with higher levels of soil salinity while the center of the marsh had lower
levels.
19.4. Discussion

The surface contour plots available in GIS software provide many new
ways to investigate and display diverse results. They facilitate the ability
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to produce surface contour plots that can estimate and display values
across a large surface area from a limited point dataset (Isaaks and
Srivastava, 1989; Burrough and McDonnell, 1998). This allows investi-
gators to quickly identify spatial and temporal patterns and trends which
they can then examine more critically. These surface plots also allow one
the ability to quickly visualize and identify possible interactions and in-
fluences that different factors may have in their study area.

The GIS user has numerous interpolation techniques from which to
choose depending on the software package selected (Isaaks and
Srivastava, 1989; Burrough and McDonnell, 1998; ESRI, 1999; Johnston
et al., 2001). Furthermore, variables such as the neighborhood size of
analysis, lag spacing, and other settings can be changed within a given
interpolation method. The surface contour plots created by these meth-
ods may show similar characteristics and trends but will often produce
visually dissimilar surface contours with considerable differences at spe-
cific locations (Bucher and Vckovski, 1995; Gotway et al., 1996; Brodsky
et al., 2001; Dille et al., 2003; Jones et al., 2003; Kravchenko, 2003;
Mueller et al., 2004). These dissimilarities are inherent to the mathemat-
ical procedures used to create the final surface contour such as the math-
ematical equations, calculations, and estimations used by those methods
(Isaaks and Srivastava, 1989). Some methods are deterministic exact in-
terpolators predicting values at sample locations that are equal to the
measured value in the dataset utilized (ESRI, 1999; Johnston et al., 2001).
While other methods are geostatistical in their calculations using math-
ematical models combined with statistical methods to create the final
surface contour plots (Johnston et al., 2001). Deterministic interpolators
seem to be more sensitive to the distribution and data point value var-
iance entered into the model producing surfaces that are more irregular.
While geostatistical interpolation seem to be less sensitive to the distri-
bution and large variances of the point data and consequently produce
smoother surface plots.

In this study, both the IDW and the ordinary kriging methods were
used to provide examples of different visual outputs created using the
same data. The kriging method produced a smooth, more regular inter-
polated surface, whereas the IDW method produced a surface that was
more strongly influenced by local measurements or the values of the spe-
cific soil samples in this case (comparing Figs. 19.3 and 19.7). Most likely
this was caused by the irregularly spaced pattern of the observation sites
that were considerably closer in the west–east direction than the north–
south direction. The IDW method produces a fairly exact surface inter-
polation as long as a regularly distributed sampling pattern is employed
(ESRI, 1999; Ormsby and Alvi, 1999; ESRI, 2000; Johnston et al., 2001).
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High point value variance or uneven distribution in the sampling patterns
often produces sharp peaks or troughs in the output surface (Ormsby
and Alvi, 1999; ESRI, 2000; Johnston et al., 2001). The point is that care
must be taken with different methods and different settings when creating
an interpolated surface in order to avoid interjecting various biases
(Gotway et al., 1996; Dille et al., 2003; Jones et al., 2003; Kravchenko,
2003; Mueller et al., 2004). The results can be useful both visually and in
predicting values for variables (in this case salinity) between sample
points.

When deciding upon the appropriate interpolation method to use to
investigate or display data, one must critically evaluate various methods
and program settings in order to obtain the best visual representation of
logical values between the sample points (Bucher and Vckovski, 1995;
Gotway et al., 1996; Brodsky et al., 2001; Dille et al., 2003; Jones et al.,
2003; Kravchenko, 2003; Mueller et al., 2004). In the current study, the
IDW results are ragged with little smoothing between sampling locations
because the IDW method uses exact interpolation with contours formed
on the specific measurements entered into the program. Consequently,
when the plots are examined it is easy to see where the measurements were
actually made. For example, when one examines Fig. 19.3, the locations
of the transects (and many soil collection sites) are obvious because of the
sharp local differences in the places on the plots and the consequent lack
of smoothing. In the kriging method, the northern and southern borders
of the salt marsh consistently show the highest levels of soil salinity. These
same areas coincide with elevations that are higher than the center of the
salt marsh. The higher salinity values at the northern and southern bor-
ders of the salt marsh are attributed to a shallow soil or deeper water
table that allows the soil to dry and therefore increase the soil surface salt
concentration. More of the salts would be washed out of the surface soils
in an area with the water table closer to the surface (Neill, 1993; Ala et al.,
1995). The areas with high soil salinity can be seen to grow larger as the
water table gets deeper and dry areas of the marsh increase in size (see
Grunstra, 2002). The same high surface soil salinity areas then recede
when the water table rises and the salts are flushed out of the soil by the
presence of surface water.

Surface soil salinity in the Diamond Y Spring salt marsh was previ-
ously found to be at its lowest level in early spring and increasing during
the summer months (Schmidt, 1986; Van Auken and Bush, 1993;
Grunstra and Van Auken, 2007; Van Auken and Bush, 1995; Bush, 2006).
This fluctuation in surface soil salinity was thought to occur in unison
with the cyclic pattern of the water table. A higher water table would
allow for more of the salts to be washed out of the surface soils while a
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lower water table would allow the soil to dry and therefore increase the
surface soil salt concentration. A study on the effects of soil salinity on
the production of a cool season grass found that spring flooding de-
creased the soil salinity (Neill, 1993). In another study, high levels of soil
water allowed salts to be distributed throughout the soil profile while low
levels of soil water caused salt accumulation in the upper soil layers due to
the high evaporative rates (Ala et al., 1995).

The expected annual cycle of salinity in the Diamond Y Spring salt
marsh was not as apparent as expected due to variation in the annual
rainfall pattern (Fig. 19.2) (NCDC, 2002). January of the study year
received no precipitation when it usually receives approximately 2 cm
while June and July received greater amounts of precipitation than nor-
mal (Fig. 19.2). The month of August shows very little precipitation
(0.4 cm) compared to the mean precipitation normally expected during
that month (5 cm) (Fig. 19.2). Thus, the mean levels for the soil salinity
did not show the expected pronounced temporal cyclic pattern. The
monthly mean soil salinity fluctuations were observed but they were not
as large as expected (Figs. 19.3, 19.6 and 19.7).

The spatial and temporal patterns of abiotic factors and their inter-
actions have been found to play an important role in the distribution of
the salt marsh vegetation in many areas and plant communities. Tem-
poral and spatial distributions of soil moisture, pH, and ionic compo-
sition were significant in determining plant community locations in a
Mediterranean salt marsh (Rogel et al., 2001). Bush (2002, 2006) found
that surface salinity had a negative effect on all growth parameters and
aboveground dry mass of Helianthus paradoxus at the Diamond Y Spring
Preserve. In addition, these effects were time dependent. Spatial and
temporal fluctuations in three halophyte species in upper coastal salt
marsh communities were influenced by saline stress and soil nutrient level
(Omer, 2004). Temporal change in soil salt levels was found to determine
plant community locations along the shoreline of a desert basin lake (Toft
and Elliot-Fisk, 2002). Soil salinity and moisture were also found to effect
the spatial and temporal variation in plant germination and establishment
in upper tidal marshes of three southern California wetlands (Noe and
Zedler, 2001). Plant zonation was related to spatial and temporal var-
iations in soil salinity in southeastern Spain (Ortiz et al., 1995). Vege-
tation distribution was also determined by soil salinity in spring fed salt
marshes in western Utah (Bolen, 1964) and around the Great Salt Lake
(Flowers, 1934).

Through the use and application of GIS, greater knowledge of the
spatial and seasonal fluctuations of the soil salinity levels in salt marshes
can be obtained. GIS interpolations have been used to determine the
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spatial dynamics of soil salinity in arid and semi-arid conditions (Jordan
et al., 2004) as well as to determine the temporal and spatial variability of
soil salinity in a coastal saline field (Shi et al., 2005) and a cotton field
irrigated with low-quality water (Cetin and Kirda, 2003). In this study,
the surface contours created for the Diamond Y Spring salt marsh have
identified seasonal fluctuations and spatial distribution in the soil salinity
across the salt marsh. The varying soil salinity levels may indicate zo-
nation and probable locations of salt marsh vegetation although this is
most likely coupled with the interaction of water level at different points
in time during the growing season.
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